
Chapter 7

Making Decisions
In This Chapter

▶ Using the if statement to make simple decisions

▶ Performing more advanced decision making with the if...else statement

▶ Creating multiple decision levels by nesting statements

T

he ability to make a decision, to take one path or another, is an essential
element of performing useful work. Math gives the computer the capability

to obtain useful information. Decisions make it possible to do something with
the information after it’s obtained. Without the capability to make decisions, a
computer would be useless. So any language you use will include the capability
to make decisions in some manner. This chapter explores the techniques that
Python uses to make decisions.

 Think through the process you use when making a decision. You obtain the
actual value of something, compare it to a desired value, and then act accord-
ingly. For example, when you see a signal light and see that it’s red, you com-
pare the red light to the desired green light, decide that the light isn’t green,
and then stop. Most people don’t take time to consider the process they use
because they use it so many times every day. Decision making comes naturally
to humans, but computers must perform the following tasks every time:

 1. Obtain the actual or current value of something.

 2. Compare the actual or current value to a desired value.

 3. Perform an action that corresponds to the desired outcome of the
comparison.

118 Part II: Talking the Talk

Making Simple Decisions
Using the if Statement

The if statement is the easiest method for making a decision in Python. It
simply states that if something is true, Python should perform the steps that
follow. The following sections tell you how you can use the if statement to
make decisions of various sorts in Python. You may be surprised at what this
simple statement can do for you.

Understanding the if statement
You use if statements regularly in everyday life. For example, you may say to
yourself, “If it’s Wednesday, I’ll eat tuna salad for lunch.” The Python if state-
ment is a little less verbose, but it follows precisely the same pattern. Say you
create a variable, TestMe, and place a value of 6 in it, like this:

TestMe = 6

You can then ask the computer to check for a value of 6 in TestMe, like this:

if TestMe == 6:
 print("TestMe does equal 6!")

Every Python if statement begins, oddly enough, with the word if. When
Python sees if, it knows that you want it to make a decision. After the word
if comes a condition. A condition simply states what sort of comparison you
want Python to make. In this case, you want Python to determine whether
TestMe contains the value 6.

 Notice that the condition uses the relational equality operator, ==, and not the
assignment operator, =. A common mistake that developers make is to use the
assignment operator rather than the equality operator. You can see a list of
relational operators in Chapter 6.

The condition always ends with a colon (:). If you don’t provide a colon,
Python doesn’t know that the condition has ended and will continue to look
for additional conditions on which to base its decision. After the colon come
any tasks you want Python to perform. In this case, Python prints a state-
ment saying that TestMe is equal to 6.

119 Chapter 7: Making Decisions

Using the if statement in an application
It’s possible to use the if statement in a number of ways in Python. However,
you immediately need to know about three common ways to use it:

 ✓ Use a single condition to execute a single statement when the condition
is true.

 ✓ Use a single condition to execute multiple statements when the condi-
tion is true.

 ✓ Combine multiple conditions into a single decision and execute one or
more statements when the combined condition is true.

The following sections explore these three possibilities and provide you
with examples of their use. You see additional examples of how to use the
if statement throughout the book because it’s such an important method of
making decisions.

Working with relational operators
A relational operator determines how a value on the left side of an expres-
sion compares to the value on the right side of an expression. After it makes
the determination, it outputs a value of true or false that reflects the
truth value of the expression. For example, 6 == 6 is true, while 5 == 6
is false. Table 6-3 contains a listing of the relational operators. The follow-
ing steps show how to create and use an if statement. This example also
appears with the downloadable source code as SimpleIf1.py.

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type TestMe = 6 and press Enter.

 This step assigns a value of 6 to TestMe. Notice that it uses the assign-
ment operator and not the equality operator.

 3. Type if TestMe == 6: and press Enter.

 This step creates an if statement that tests the value of TestMe using
the equality operator. You should notice two features of the Python Shell
at this point:

	 •	The	word	if is highlighted in a different color than the rest of the
statement.

	 •	The	next	line	is	automatically	indented.

120 Part II: Talking the Talk

 4. Type print(“TestMe does equal 6!”) and press Enter.

 Notice that Python doesn’t execute the if statement yet. It does indent the
next line. The word print appears in a special color because it’s a function
name. In addition, the text appears in another color to show you that it’s a
string value. Color coding makes it much easier to see how Python works.

 5. Press Enter.

 The Python Shell outdents this next line and executes the if statement, as
shown in Figure 7-1. Notice that the output is in yet another color. Because
TestMe contains a value of 6, the if statement works as expected.

Figure 7-1:

Simple if

statements

can help

your appli­

cation know

what to do

in certain

conditions.

Performing multiple tasks
Sometimes you want to perform more than one task after making a decision.
Python relies on indentation to determine when to stop executing tasks as
part of an if statement. As long as the next line is indented, it’s part of the
if statement. When the next line is outdented, it becomes the first line of
code outside the if block. A code block consists of a statement and the tasks
associated with that statement. The same term is used no matter what kind
of statement you’re working with, but in this case, you’re working with an if
statement that is part of a code block. This example also appears with the
downloadable source code as SimpleIf2.py.

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type the following code into the window — pressing Enter after
each line:

TestMe = 6
if TestMe == 6:
 print("TestMe does equal 6!")
 print("All done!")

121 Chapter 7: Making Decisions

 Notice that the shell continues to indent lines as long as you continue to
type code. Each line you type is part of the current if statement code
block.

 When working in the shell, you create a block by typing one line of code
after another. If you press Enter twice in a row without entering any text,
the code block is ended, and Python executes the entire code block at
one time.

 3. Press Enter.

 Python executes the entire code block. You see the output shown in
Figure 7-2.

Figure 7-2:

A code

block can

contain mul­

tiple lines of

code — one

for each

task.

Making multiple comparisons using logical operators
So far, the examples have all shown a single comparison. Real life often
requires that you make multiple comparisons to account for multiple require-
ments. For example, when baking cookies, if the timer has gone off and the
edges are brown, it’s time to take the cookies out of the oven.

 In order to make multiple comparisons, you create multiple conditions using
relational operators and combine them using logical operators (see Table 6-4).
A logical operator describes how to combine conditions. For example, you
might say x == 6 and y == 7 as two conditions for performing one or more
tasks. The and keyword is a logical operator that states that both conditions
must be true.

One of the most common uses for making multiple comparisons to deter-
mine when a value is within a certain range. In fact, range checking, the act
of determining whether data is between two values, is an important part of
making your application secure and user friendly. The following steps help

122 Part II: Talking the Talk

you see how to perform this task. In this case, you create a file so that you
can run the application multiple times. This example also appears with the
downloadable source code as SimpleIf3.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after each
line:

Value = int(input("Type a number between 1 and 10: "))

if (Value > 0) and (Value <= 10):
 print("You typed: ", Value)

 The example begins by obtaining an input value. You have no idea what
the user has typed other than that it’s a value of some sort. The use
of the int() function means that the user must type a whole number
(one without a decimal portion). Otherwise, the application will raise
an exception (an error indication; Chapter 9 describes exceptions). This
first check ensures that the input is at least of the correct type.

 The if statement contains two conditions. The first states that Value
must be greater than 0. You could also present this condition as
Value >= 1. The second condition states that Value must be less
than or equal to 10. Only when Value meets both of these conditions
will the if statement succeed and print the value the user typed.

 3. Choose Run➪Run Module.

 You see a Python Shell window open with a prompt to type a number
between 1 and 10.

 4. Type 5 and press Enter.

 The application determines that the number is in the right range and
outputs the message shown in Figure 7-3.

 5. Repeat Steps 3 and 4, but type 22 instead of 5.

 The application doesn’t output anything because the number is in the
wrong range. Whenever you type a value that’s outside the programmed
range, the statements that are part of the if block aren’t executed.

 6. Repeat Steps 3 and 4, but type 5.5 instead of 5.

 Python displays the error message shown in Figure 7-4. Even though
you may think of 5.5 and 5 as both being numbers, Python sees the first
number as a floating-point value and the second as an integer.

123 Chapter 7: Making Decisions

 7. Repeat Steps 3 and 4, but type Hello instead of 5.

 Python displays about the same error message as before. Python doesn’t
differentiate between types of wrong input. It only knows that the input
type is incorrect and therefore unusable.

Figure 7-3:

The applica­

tion verifies

the value is

in the right

range and

outputs a

message.

Figure 7-4:

Typing the

wrong type

of informa­

tion results

in an error

message.

 The best applications use various kinds of range checking to ensure that the
application behaves in a predictable manner. The more predictable an appli-
cation becomes, the less the user thinks about the application and the more
time the user spends on performing useful work. Productive users tend to be
a lot happier than those who constantly fight with their applications.

124 Part II: Talking the Talk

Choosing Alternatives Using
the if...else Statement

Many of the decisions you make in an application fall into a category of
choosing one of two options based on conditions. For example, when looking
at a signal light, you choose one of two options: press on the brake to stop
or press the accelerator to continue. The option you choose depends on the
conditions. A green light signals that you can continue on through the light; a
red light tells you to stop. The following sections describe how Python makes
it possible to choose between two alternatives.

Understanding the if...else statement
With Python, you choose one of two alternatives using the else clause of the
if statement. A clause is an addition to a code block that modifies the way in
which it works. Most code blocks support multiple clauses. In this case, the
else clause enables you to perform an alternative task, which increases the
usefulness of the if statement. Most developers refer to the form of the if
statement that has the else clause included as the if...else statement,
with the ellipsis implying that something happens between if and else.

 Sometimes developers encounter problems with the if...else statement
because they forget that the else clause always executes when the condi-
tions for the if statement aren’t met. It’s important to think about the con-
sequences of always executing a set of tasks when the conditions are false.
Sometimes doing so can lead to unintended consequences.

Using the if...else statement
in an application
The SimpleIf3.py example is a little less helpful than it could be when the
user enters a value that’s outside the intended range. Even entering data of
the wrong type produces an error message, but entering the correct type of
data outside the range tells the user nothing. In this example, you discover
the means for correcting this problem by using an else clause. The following
steps demonstrate just one reason to provide an alternative action when the
condition for an if statement is false. This example also appears with the
downloadable source code as IfElse.py.

125 Chapter 7: Making Decisions

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

Value = int(input("Type a number between 1 and 10: "))

if (Value > 0) and (Value <= 10):
 print("You typed: ", Value)
else:
 print("The value you typed is incorrect!")

 As before, the example obtains input from the user and then determines
whether that input is in the correct range. However, in this case, the
else clause provides an alternative output message when the user
enters data outside the desired range.

 Notice that the else clause ends with a colon, just as the if statement
does. Most clauses that you use with Python statements have a colon
associated with them so that Python knows when the clause has ended.
If you receive a coding error for your application, make sure that you
check for the presence of the colon as needed.

 3. Choose Run➪Run Module.

 You see a Python Shell window open with a prompt to type a number
between 1 and 10.

 4. Type 5 and press Enter.

 The application determines that the number is in the right range and
outputs the message shown previously in Figure 7-3.

 5. Repeat Steps 3 and 4, but type 22 instead of 5.

 This time the application outputs the error message shown in Figure 7-5.
The user now knows that the input is outside the desired range and
knows to try entering it again.

Using the if...elif statement
in an application
You go to a restaurant and look at the menu. The restaurant offers eggs, pan-
cakes, waffles, and oatmeal for breakfast. After you choose one of the items,
the server brings it to you. Creating a menu selection requires something
like an if...else statement, but with a little extra oomph. In this case, you
use the elif clause to create another set of conditions. The elif clause is a
combination of the else clause and a separate if statement. The following
steps describe how to use the if...elif statement to create a menu. This
example also appears with the downloadable source code as IfElif.py.

126 Part II: Talking the Talk

Figure 7-5:

It’s always

a good idea

to provide

feedback

for incorrect

input.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

print("1. Red")
print("2. Orange")
print("3. Yellow")
print("4. Green")
print("5. Blue")
print("6. Purple")

Choice = int(input("Select your favorite color: "))

if (Choice == 1):
 print("You chose Red!")
elif (Choice == 2):
 print("You chose Orange!")
elif (Choice == 3):
 print("You chose Yellow!")
elif (Choice == 4):
 print("You chose Green!")
elif (Choice == 5):
 print("You chose Blue!")
elif (Choice == 6):
 print("You chose Purple!")
else:
 print("You made an invalid choice!")

 The example begins by displaying a menu. The user sees a list of choices
for the application. It then asks the user to make a selection, which it
places inside Choice. The use of the int() function ensures that the
user can’t type anything other than a number.

127 Chapter 7: Making Decisions

 After the user makes a choice, the application looks for it in the list of
potential values. In each case, Choice is compared against a particular
value to create a condition for that value. When the user types 1, the
application outputs the message "You chose Red!". If none of the
options is correct, the else clause is executed by default to tell the user
that the input choice is invalid.

 3. Choose Run➪Run Module.

 You see a Python Shell window open with the menu displayed. The appli-
cation asks you to select your favorite color.

 4. Type 1 and press Enter.

 The application displays the appropriate output message, as shown in
Figure 7-6.

 5. Repeat Steps 3 and 4, but type 5 instead of 1.

 The application displays a different output message — the one associ-
ated with the requested color.

 6. Repeat Steps 3 and 4, but type 8 instead of 1.

 The application tells you that you made an invalid choice.

 7. Repeat Steps 3 and 4, but type Red instead of 1.

 The application displays the expected error message, as shown in
Figure 7-7. Any application you create should be able to detect errors
and incorrect inputs. Chapter 9 shows you how to handle errors so that
they’re user friendly.

Figure 7-6:

Menus let

you choose

one option

from a list of

options.

128 Part II: Talking the Talk

Figure 7-7:

Every

application

you create

should

include

some means

of detecting

errant input.

No switch statement?
If you’ve worked with other languages, you
might notice that Python lacks a switch state­
ment (if you haven’t, there is no need to worry
about it with Python). Developers commonly
use the switch statement in other languages to
create menu­based applications. The if...
elif statement is generally used for the same
purpose in Python.

However, the if...elif statement doesn’t
provide quite the same functionality as a switch
statement because it doesn’t enforce the use of
a single variable for comparison purposes. As
a result, some developers rely on Python’s dic­
tionary functionality to stand in for the switch
statement. Chapter 13 describes how to work
with dictionaries.

129 Chapter 7: Making Decisions

Using Nested Decision Statements
The decision-making process often happens in levels. For example, when
you go to the restaurant and choose eggs for breakfast, you have made a
first-level decision. Now the server asks you what type of toast you want
with your eggs. The server wouldn’t ask this question if you had ordered
pancakes, so the selection of toast becomes a second-level decision. When
the breakfast arrives, you decide whether you want to use jelly on your toast.
This is a third-level decision. If you had selected a kind of toast that doesn’t
work well with jelly, you might not have had to make this decision at all. This
process of making decisions in levels, with each level reliant on the decision
made at the previous level, is called nesting. Developers often use nesting
techniques to create applications that can make complex decisions based on
various inputs. The following sections describe several kinds of nesting you
can use within Python to make complex decisions.

Using multiple if or if...else statements
The most commonly used multiple selection technique is a combination of if
and if...else statements. This form of selection is often called a selection
tree because of its resemblance to the branches of a tree. In this case, you
follow a particular path to obtain a desired result. The example in this section
also appears with the downloadable source code as MultipleIfElse.py.

 1. Open a Python File window.

 You see an editor where you can type the example code.

 2. Type the following code into the window — pressing Enter after each
line:

One = int(input("Type a number between 1 and 10: "))
Two = int(input("Type a number between 1 and 10: "))

if (One >= 1) and (One <= 10):
 if (Two >= 1) and (Two <= 10):
 print("Your secret number is: ", One * Two)
 else:
 print("Incorrect second value!")
else:
 print("Incorrect first value!")

 This is simply an extension of the IfElse.py example you see in the
“Using the if...else statement in an application” section of the chapter.
However, notice that the indentation is different. The second if...
else statement is indented within the first if...else statement. The
indentation tells Python that this is a second-level statement.

130 Part II: Talking the Talk

 3. Choose Run➪Run Module.

 You see a Python Shell window open with a prompt to type a number
between 1 and 10.

 4. Type 5 and press Enter.

 The shell asks for another number between 1 and 10.

 5. Type 2 and press Enter.

 You see the combination of the two numbers as output, as shown in
Figure 7-8.

Figure 7-8:

Adding mul­

tiple levels

lets you per­

form tasks

with greater

complexity.

This example has the same input features as the IfElse.py example. For
example, if you attempt to provide a value that’s outside the requested range,
you see an error message. The error message is tailored for either the first or
second input value so that the user knows which value was incorrect.

 Providing specific error messages is always useful because users tend to
become confused and frustrated otherwise. In addition, a specific error mes-
sage helps you find errors in your application much faster.

Combining other types of decisions
It’s possible to use any combination of if, if...else, and if...elif state-
ments to produce a desired outcome. You can nest the code blocks as many
levels deep as needed to perform the required checks. For example, Listing 7-1
shows what you might accomplish for a breakfast menu. This example also
appears with the downloadable source code as MultipleIfElif.py.

131 Chapter 7: Making Decisions

Listing 7-1: Creating a Breakfast Menu

print("1. Eggs")
print("2. Pancakes")
print("3. Waffles")
print("4. Oatmeal")
MainChoice = int(input("Choose a breakfast item: "))

if (MainChoice == 2):
 Meal = "Pancakes"
elif (MainChoice == 3):
 Meal = "Waffles"

if (MainChoice == 1):
 print("1. Wheat Toast")
 print("2. Sour Dough")
 print("3. Rye Toast")
 print("4. Pancakes")
 Bread = int(input("Choose a type of bread: "))

 if (Bread == 1):
 print("You chose eggs with wheat toast.")
 elif (Bread == 2):
 print("You chose eggs with sour dough.")
 elif (Bread == 3):
 print("You chose eggs with rye toast.")
 elif (Bread == 4):
 print("You chose eggs with pancakes.")
 else:
 print("We have eggs, but not that kind of bread.")

elif (MainChoice == 2) or (MainChoice == 3):
 print("1. Syrup")
 print("2. Strawberries")
 print("3. Powdered Sugar")
 Topping = int(input("Choose a topping: "))

 if (Topping == 1):
 print ("You chose " + Meal + " with syrup.")
 elif (Topping == 2):
 print ("You chose " + Meal + " with strawberries.")
 elif (Topping == 3):
 print ("You chose " + Meal + " with powdered

sugar.")
 else:
 print ("We have " + Meal + ", but not that

topping.")

elif (MainChoice == 4):
 print("You chose oatmeal.")

else:
 print("We don't serve that breakfast item!")

132 Part II: Talking the Talk

This example has some interesting features. For one thing, you might assume
that an if...elif statement always requires an else clause. This example
shows a situation that doesn’t require such a clause. You use an if...elif
statement to ensure that Meal contains the correct value, but you have no
other options to consider.

The selection technique is the same as you saw for the previous examples.
A user enters a number in the correct range to obtain a desired result. Three
of the selections require a secondary choice, so you see the menu for that
choice. For example, when ordering eggs, it isn’t necessary to choose a top-
ping, but you do want a topping for pancakes or waffles.

Notice that this example also combines variables and text in a specific way.
Because a topping can apply equally to waffles or pancakes, you need some
method for defining precisely which meal is being served as part of the
output. The Meal variable that the application defines earlier is used as part
of the output after the topping choice is made.

The best way to understand this example is to play with it. Try various menu
combinations to see how the application works. For example, Figure 7-9
shows what happens when you choose a waffle breakfast with a strawberry
topping.

Figure 7-9:

Many appli­

cations rely

on multilevel

menus.

